

# An Approach to Building Near-Real-Time Situational Awareness of Local Supply Chains Following Disasters

Kyle Burke Pfeiffer
Manager, National Preparedness Analytics Group
Risk and Infrastructure Science Center
Argonne National Laboratory



#### **Supply Chain Description**

Activities associated with the flow and transformation of goods from raw materials to end-users.



The flow can be linear or involve communication between and within upstream and downstream components.

#### **Key Terms**

- Supply Node/origin—Warehouse, distribution center, etc.
- Demand node/destination—Grocery store, gas station, pharmacy, etc.



### Resilient Cities 2018

## Risks to Supply Chains

- Supply chain risk management is concerned with identifying and mitigating a host of risks—from coordination of supply and demand to minimizing disruption of normal activities.
- Today, we'll focus on disruption risks such as:
  - Operational contingencies
  - Natural hazards
  - Terrorism
  - Political instability
- These risks can occur anywhere along the supply chain continuum.

# Simple Local Supply Chain Resilient Cities 2018 Resilience Analytic Framework

- Identifying critical supply and demand nodes within or near your community
- Building relationships with key private sector partners
- Gaining and understanding of their reliance on supporting lifeline infrastructure
- Organizing your findings in a logical manner (that can be easily referenced following a nonotice catastrophe)

# Supply Chains and Infrastructure Reliance



- Most supply and demand nodes are reliant on lifeline infrastructure, such as electricity, water, natural gas, etc.
- This reliance can be described as a dependency, or a linkage or connection between two infrastructures, by which the state of one infrastructure influences or is reliant upon the state of the other.

ASSET ONE UNIDIRECTIONAL RELATIONSHIP ASSET TWO



## Overview

- Problem Statement: Near-real time situational awareness of the operational status of critical supply and demand nodes following a major disaster is needed to inform response and recovery activities; however, this information has generally been observed informally by public safety officials.
- Goal: To develop a model that can be used by public safety
  officials to make informed assumptions regarding the
  capability of assets (e.g. a grocery store) and systems (e.g. all
  local grocery stores) to support affected communities
  following a catastrophic incident.

#### **Waffle House Index**

"If you get there and the Waffle House is closed? That's really bad. That's where you go to work."—Former FEMA Administrator, Craig Fugate

### Resilient Cities 2018

## **GRID-M Logic**

- The operational status of each supply and demand node can be characterized as operational, partially operational, or not operational.
- These statuses are obtained by matching real-time outage or disruption data from utility providers with predetermined specific coping strategies (e.g. backup power) based on a pre-incident limited infrastructure survey.
- The following sectors are currently included within GRID-M:
  - Electric
  - Natural Gas
  - Water
  - Wastewater
- Dependencies between nodes are also captured.
- This information can also be paired with a limited damage survey (e.g. a windshield damage assessment) to further provide situational awareness for each node within supply chains of interest.
- GRID-M displays all outputs within a Geographic Information Systems environment with additional prepopulated layers such as real-time traffic and demographics information of the affected communities.



## Sample Results





# Sample Results





# Sample Results





## Resilient Cities 2018

## **Example Use Cases**

- The identification of priority infrastructure using a "planning" view;
- Exercise simulations;
- Real world "grassroots-fed" situational awareness of the likely operational status of supply and demand nodes based on several external and internal variables;
- The development of Incident Action Plans;
- The prioritization of restoration activities; and
- Quasi-predictive operational status for future planning efforts.