An Approach to Building Near-Real-Time Situational Awareness of Local Supply Chains Following Disasters

Kyle Burke Pfeiffer
Manager, National Preparedness Analytics Group
Risk and Infrastructure Science Center
Argonne National Laboratory
Supply Chains in Context

Supply Chain Description
Activities associated with the flow and transformation of goods from raw materials to end-users.

The flow can be linear or involve communication between and within upstream and downstream components.
Supply Chains in Context

Key Terms

- **Supply Node/origin**—Warehouse, distribution center, etc.
- **Demand node/destination**—Grocery store, gas station, pharmacy, etc.
Risks to Supply Chains

• Supply chain risk management is concerned with identifying and mitigating a host of risks—from coordination of supply and demand to minimizing disruption of normal activities.

• Today, we’ll focus on disruption risks such as:
 – Operational contingencies
 – Natural hazards
 – Terrorism
 – Political instability

• These risks can occur anywhere along the supply chain continuum.
Simple Local Supply Chain Resilience Analytic Framework

• Identifying critical supply and demand nodes within or near your community
• Building relationships with key private sector partners
• Gaining and understanding of their reliance on supporting lifeline infrastructure
• Organizing your findings in a logical manner (that can be easily referenced following a no-notice catastrophe)
Supply Chains and Infrastructure Reliance

• Most supply and demand nodes are reliant on lifeline infrastructure, such as electricity, water, natural gas, etc.

• This reliance can be described as a dependency, or a linkage or connection between two infrastructures, by which the state of one infrastructure influences or is reliant upon the state of the other.
Overview

• **Problem Statement**: Near-real time situational awareness of the operational status of critical supply and demand nodes following a major disaster is needed to inform response and recovery activities; however, this information has generally been observed informally by public safety officials.

• **Goal**: To develop a model that can be used by public safety officials to make informed assumptions regarding the capability of assets (e.g. a grocery store) and systems (e.g. all local grocery stores) to support affected communities following a catastrophic incident.

Waffle House Index

"If you get there and the Waffle House is closed? That’s really bad. That’s where you go to work.“—Former FEMA Administrator, Craig Fugate
GRID-M Logic

- The operational status of each supply and demand node can be characterized as operational, partially operational, or not operational.
- These statuses are obtained by matching real-time outage or disruption data from utility providers with predetermined specific coping strategies (e.g. backup power) based on a pre-incident limited infrastructure survey.
- The following sectors are currently included within GRID-M:
 - Electric
 - Natural Gas
 - Water
 - Wastewater
- Dependencies between nodes are also captured.
- This information can also be paired with a limited damage survey (e.g. a windshield damage assessment) to further provide situational awareness for each node within supply chains of interest.
- GRID-M displays all outputs within a Geographic Information Systems environment with additional prepopulated layers such as real-time traffic and demographics information of the affected communities.
Sample Results
Sample Results
Sample Results
Example Use Cases

• The identification of priority infrastructure using a “planning” view;
• Exercise simulations;
• Real world “grassroots-fed” situational awareness of the likely operational status of supply and demand nodes based on several external and internal variables;
• The development of Incident Action Plans;
• The prioritization of restoration activities; and
• Quasi-predictive operational status for future planning efforts.